15th Israeli Symposium on Jet Engine & Gas Turbines, Haifa, Israel

CHALLENGES OF DETONATION ENGINES FOR FUTURE JET PROPULSION

Dr. Bayindir H. Saracoglu
von Karman Institute for Fluid Dynamics

Need for a new architecture

 Realization of efficient high speed flight demanding efficient propulsion systems

State-of-the-art propulsion reaching its limits through incremental improvements

A radical change in architecture required to achieve a

step-up in paradigm

 Detonation engines promising higher ISPs

 Better performance foreseen upon other propulsion systems under R&D for supersonic flight

What is detonation?

Pressure gain combustion:

"an unsteady process whereby gas expansion by heat release is constrained, causing a rise in stagnation pressure and allowing work extraction by expansion to the initial pressure"

> AIAA - Pressure Gain Combustion Program Committee

Ways to achieve detonation

- Pulsed detonation Wave combustors (PDE)
 - Periodical detonation at low frequencies
 - Ignition system
 - Purge and refill

- Autoperiodic supply and detonation of fresh mixture
- Resonator design: difficult

G. D. Roy et al., 2004

- Rotating Detonation Combustors (RDE)
 - Continuous detonation
 - High operating frequency (order of kHz)
 - Simultaneous expulsion of exhaust gases and continuous refill of fresh mixture
 - Complex 3D flow field
 - Compact

TABLE OF CONTENTS

- Overview of detonation engines
- Thermodynamics of the detonation engine
- Pulse detonation engine
- Rotating detonation engines
- Turbomachinery integration
- Energy extraction methods

Thermodynamics of theoretical detonation cycle

- Detonation based cycles attaining higher pressure for the same temperature
- High pressure rise during the combustion process
- · Less entropy generation to reach the same expander inlet temperatures
- Significant thermal efficiency augmentation as compared to Brayton Cycle

Pulse detonation engine (PDE)

Initial state (ambient conditions) p₀

Pulse detonation engine (PDE)

Pulse detonation engine (PDE) – Jet propulsion

- Detonation pulses utilized to augment thrust
- Direct implementation of multiple PDE tubes to propel Borealis aircraft
- Is there any room for improvement?

First flight of pulse detonation engine, Mojave (2008)

Pulse detonation engine (PDE)

Use of optimized nozzles to increase the force at the outlet

Method:

- Starting from a diverging nozzle geometry
- Parameterization of the nozzle with a Bezier curve
- Letting the optimizer vary the geometry until the optimized objective function obtained
- Nozzle shape:
 - Third order curve
 - Design variables: x₁, x₂, y₂
 - Fixed length and area ratio

Pulse detonation engine (PDE) – CFD evaluation

Time averaged force acting on the exit nozzle surface

0.050

0.025

Pulse detonation engine (PDE) - Reactive flow analysis

Rotating detonation engines (RDE)

Slip line

oblique shock

deflagration

detonation front

- Periodic ignition not required
- Continuous combustion of the reactants
- Much higher frequencies attained – order of kHz
- Integration to the radial machinery
- Jet propulsion applications

Rotating detonation engine – General flow field

Rotating detonation engine – General flow field

- Continuous consumption of the incoming fuel
- Significant pressure gain attained through the detonation wave
- High temperature field (mainly above 2000K) dominating the outlet of the combustor

Rotating detonation engine – Detailed flow field (inlet)

- Periodic pressure rise up to 15 time of inlet P
- The temperature increase up to 3000 K
- Inlet Mach number reaching 0.8
- Circumferential pressure reflection behind the detonation wave

0.0115

0.012

t [s]

P [MPa]

Rotating detonation engines – Detailed flow field (outlet)

- Outlet T and P reaching 3000 K and 12 bars respectively
- Flow remaining supersonic for almost complete cycle
- Strong flow angle change due high variation on both components

Rotating detonation engines (RDE) - Jet propulsion

Rotating detonation engines (RDE) – Jet propulsion

Rotating detonation engines (RDE) – Jet propulsion

Detonation engines – Turbomachinery integration

- A challenging task due to:
 - Inherent high amplitude high frequency unsteadiness
 - Strong blockage at the compressor outlet
 - Possible operational problems due to stall and surge
 - Starting issues of turbine blade passages due to high supersonic flows
 - Unprecedented variation on the incidence angle
 - Strong efficiency abatement due to leading edge shocks on poor designs

Detonation engines – Compressor integration

Aerodynamic effect on a radial compressor for EC-Tide Project

Flow field around the shroud

- Strong deceleration in the flow passages
- Formation of normal shock wave chocking the Main Blade passage
- Migration of a supersonic pocket towards the Suction Side of the Splitter Blades

Detonation engines – Integration of turbine

Detonation engines – Direct power extraction

Further exploitation grounds in the fields of energy production

- Magnetohydrodynamic (MHD) effects of fluids at high temperature
- Passage of ionized particles through a magnetic field creating electric field
- Harnessing electrical energy through electrodes
- Ion augmentation with alkali seeding

C. Rotating detonation engine

Closure

- Detonation engine offering great potential for future propulsion
- PDE compromising simpler implementation with low frequency
- PDE already proven potential for jet propulsion
- RDE providing much higher frequencies
- Increasing detonation wave number leading more uniform flow
- Turbomachinery integration stands as a challenging task
- Opening a new venue in direct energy extraction

References

- [1] Braun J., <u>Saracoglu B.H.</u>, Paniagua G., "Unsteady Performance of Rotating Detonation Engines with Different Exhaust Nozzles" (2016) Journal of Propulsion and Power
- [2] Saracoglu B.H, Paniagua G., "Aerodynamic Performance of a Centrifugal Compressor Exposed to Unsteady Non-Uniform Outlet Conditions Governed by Detonation Tubes" (2015) SAE AeroTech
- [3] Paniagua G., Sousa J., "Design and analysis of pioneering High supersonic axial turbines" (2014) International Journal of Mechanical Sciences
- [4] Barun J., Saracoglu B.H., Magin T., Paniagua G., "One-Dimensional Analysis of the Magnetohydrodynamic Effect in Rotating Detonation Combustors" (2016) AIAA Journal

Thank you for your attention

