### Suppression of Combustion Instability in Gas Turbine Combustion Chamber

- Y. Levy, A. Roizman, V. Sherbaum, V. Erenburg, V. Ovcharenko, V. Nadvani Technion
- A. Litinetsky, B. Chudnovski IEC





Faculty of Aerospace Engineering, Technion, Haifa, Israel November 17 2016

#### **Turbo & Jet Engine Laboratory**

### **Content of Presentation**

- Introduction
- Free Radicals
- Chemical Kinetics Simulations
- Radicals Generator
- •Test Rig Description
- Results
- Conclusions







#### **Turbo & Jet Engine Laboratory**

### Introduction

- NOx emission restrictions led to improved combustion methods
- NOx formation requires high activation energy and hence high reaction temperature
- Lean Premixed Combustion method for Ultra NOx combustion (potentially >10ppmv)
- Well premixed mixture  $\rightarrow T_{\text{combustion}}$  is a strong function of  $\phi$
- Low  $\phi$  combustion  $\rightarrow$  Low flame temperature





\*Oates, Gordon C. Aerothermodynamics of aircraft engine components. Aiaa, 1985.

#### **Turbo & Jet Engine Laboratory**

# Introduction (cont.)

Drawbacks of Lean Premix Combustion:

- Operation near the Lean Blow Off (LBO) limit causes combustion instability
- Closed Loop: Acoustic Oscillations → Flow and Mixture Perturbations → Heat
  Release Oscillations → Acoustic Oscillations







#### **Turbo & Jet Engine Laboratory**

### **Introduction (cont.)**

- Developed Acoustic Oscillations cause:
  - Combustion Blow Off and Flame Flashback
  - Increased Fatigue Wear
  - Enhanced Heat Transfer to the Liner Wall
  - Control System Interference
  - Components and Engine Failure









\*Sewell, Jesse, Pete Sobieski, and Craig Beers. "Application of continuous combustion dynamics monitoring on large industrial gas turbines." *ASME Turbo Expo 2004: Power for Land, Sea, and Air.* American Society of Mechanical Engineers, 2004



#### **Turbo & Jet Engine Laboratory**

## Introduction (cont.)



- Small changes in φ → large changes in τ
- Large changes in τ → large changes in q'
- Free radicals have high reaction rate
- Injection of free radicals → small changes in τ

\*Oates, Gordon C. Aerothermodynamics of aircraft engine components. Aiaa, 1985.



### **Free Radicals**

• Global reaction of combustion:

 $CH_4 + 2 \cdot (O_2 + 3.76N_2) \leftrightarrow CO_2 + 2H_2O + 2 \cdot 3.76N_2$ 

In real life the reaction of combustion contains tens of thousands

of reactions and hundreds of intermediate species



Simplified flow diagram for methane combustion



\*McAllister, Sara, Jyh-Yuan Chen, and A. Carlos Fernandez-Pello. Fundamentals of combustion processes. Springer, 2011

### Turbo & Jet Engine Laboratory

### **Free Radicals**

- These species are called free radicals
- Their main characteristics are:
  - Unstable
  - Very reactive
- Examples of free radicals: H, OH, CH\*, CH<sub>2</sub>, CH<sub>3</sub>, C<sub>2</sub>H, C<sub>2</sub>H<sub>2</sub>, C<sub>2</sub>H<sub>3</sub>, C<sub>2</sub>H<sub>4</sub> and more.



#### **Turbo & Jet Engine Laboratory**

### **Radicals Generator**

- Additional small combustion chamber (pilot) is operated at very rich equivalence ratio (non-complete combustion) to generate the radicals
- Pilot's exhaust is connected to the main combustor such that the pilot exhaust gases are injected into the main combustor primary zone
- Products of incomplete combustion contain free radicals and CO (which is also flammable)
- Lack of oxygen (rich φ) inside the pilot prevents NOx formation. The resultant CO is burned inside the main combustor





\*Oates, Gordon C. Aerothermodynamics of aircraft engine components. Aiaa, 1985.

#### Turbo & Jet Engine Laboratory

# **Chemical Kinetics Simulations**

- In order to predict the composition of the pilot's exhaust gases towards appropriate design of the pilot, chemical kinetics simulations were run using CHEMKIN PRO software
- The simulation system:



- Source of Inlet Initial Conditions
- PSR Perfectly Stirred Reactor
- PFR Plug Flow Reactor
- Product Products of PFR



#### **Turbo & Jet Engine Laboratory**

### **Chemical Kinetics Simulations**



• Summary of the simulation results and conditions:

#### Operating conditions

| Pressure [atm]               | 1      |
|------------------------------|--------|
| PSR Temperature [K]          | 2000   |
| Residence Time [s]           | 0.053  |
| Equivalence Ratio            | 2      |
| Heat Transfer Coeff. [W/m*K] | 35     |
| Chemical Mechanism           | GRI3.0 |

#### Simulation results

| T T T T 7 |         | Mole Fraction |           |
|-----------|---------|---------------|-----------|
| Species   | [kJ/kg] | Adiabatic     | Heat Loss |
| CH3       | 60194.1 | 0.00033       | 0.000078  |
| C2H       | 58988.3 | 0.00000019    | 0         |
| C2H3      | 53595.7 | 0.0000026     | 0.000008  |
| C2H5      | 51900.3 | 0.000001      | 0.0000075 |
| C2H2      | 48298.1 | 0.018         | 0.001     |
| C2H6      | 47617.4 | 0.00003       | 0.00105   |
| C2H4      | 47249.1 | 0.0005        | 0.0137    |
| OH        | 33085.4 | 0.0000135     | 0.000001  |
| CH4       | 50000   | 0.0085        | 0.0195    |
| Н         | 121000  | 0.000175      | 0.00001   |



#### **Turbo & Jet Engine Laboratory**

## **Radicals Generator (cont.)**

• Radicals generator was designed and operated according to the chemical kinetic simulation results



- 1. Primal chamber
- 2. Premix chamber
- 3. Flame holder
- 4. Combustion chamber
- 5. Exhaust





#### **Turbo & Jet Engine Laboratory**

## **Main Combustion Chamber**

- Two configurations of main combustion chamber were tested:
  - Configuration A with gradually diverging cone
  - Configuration B with swirler and sudden flow expansion



### **Configuration A**





### **Configuration B**





#### **Turbo & Jet Engine Laboratory**

### <u>Results – LBO Limit</u>

- The effect of free radicals injection on LBO limit was studied:
  - $\dot{m}_{fuel_{main}}$  gradually decreased



# **Results – Medium Frequency Oscillations**

• The medium frequency instability oscillations were suppressed by injection of free radicals into the primary zone of the main combustor. Total amount of fuel was kept constant





Free radicals suppress the medium frequency instability

### **Turbo & Jet Engine Laboratory**

### **Results – Low Frequency Oscillations**

• The low frequency instability oscillations were suppressed by injection of free radicals into the primary zone of the main combustor. Total amount of fuel was kept constant





Free radicals suppress the low frequency instability

#### **Turbo & Jet Engine Laboratory**

### Conclusions

- The effect of free radicals injection on combustion instability was studied
- Experimental test rig was built based on the chemical kinetics simulations
- LBO limit can be lowered by the injection of the radicals
- Acoustic oscillations (middle and low frequency) caused by the combustion instability could be successfully suppressed by the injection of free radicals



### **Future Work**



#### **Turbo & Jet Engine Laboratory**