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Previous Investigations of Geometric 
Variability in Turbomachinery

Compressors

 Garzon and Darmofal, 2003: Effects on compressor performance
 Lange et al., 2011: Effects on stage performance
 Goodhand et al., 2012: Effects on incidence and 3D separations
 Schnell et al., 2013: Effects on fan performance, including unsteadiness
 Dow and Wang, 2015: Optimization of airfoils taking into account tolerances
 Reitz et al., 2016: Simulations of deteriorated HPC airfoils

Turbines

 Bammert and Sandstede, 1976: Effects of tolerances and blade surface-
roughness on performance

 Marcu et al., 2002: Effects on unsteady loads for the MD-XX Advanced Upper 
Stage Engine

 Andersson et al. 2007: Effects on supersonic turbine performance
 Buske et al., 2016: MDO of a turbine blade considering casting variability
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1B

A Non-Proprietary Platform for Investigating 
Unsteady Aero and Heat Transfer

947 Sensors to Measure Heat Transfer and Unsteady Pressure

Designed to a Gov’t Study Cycle of Interest :

Pressure Ratio      3.75 (total-total)
Reaction         49.5% (static pressure)      
AN2 (m2 rpm2) 37.0 x106 (Engine)

1V 1B 2V
Turning 77° 116° 11°
Mexit 0.88 1.30 0.89
Airfoil Count 23 46 23
Zweifel Coefficient 0.83 1.05 0.40

Turbine Research Facility
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1B Suction Side, Power-Spectral Densities

Cross-Passage Shock Location

Unsteadiness Due to Downstream Interaction is 
Dominated by First Harmonic of Vane Passing
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N.B. Engine order 1 (1E) signifies  
the frequency of revolution in Hz.  
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Careful Analysis of Turbine Flowfield 
Reveals the Source of 46E Unsteadiness

Reflected shocks are labeled with 
subscripts indicating originating 
blade, e.g.

 SA traveling upstream toward 
blades

 SB impinging on 2V PS and 
reflecting to neighboring SS

Each blade is impacted by shocks 
from the second and third 
preceding blades, e.g.

 Blade D impacted by shocks 
from blades A and B

Note: Shocks become more 
aligned with circumferential 
direction with travel upstream
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Blade Predicted and Measured 
Unsteadiness Spectra

Experimental and Predicted DFT of PRZA14 (Blade 
SS, 15% Span, 87.7% Axial Chord)

Experimental and Predicted DFT of PRTT15 (Blade 
SS, 49.5% Span, 88.1% Axial Chord)
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Blade Optical Scans

•105 airfoils produced by PCC 
were available for optical 
scanning:
46 airfoils in test turbine  

(includes final machined 
surfaces and cooling holes on 
37 of 46 airfoils)

59 spares (raw castings)
All measured airfoils are 

available for further analysis

•Airfoils measured via blue 
structured-light optical scanner
8 megapixels
50.8 μm (2 mil) resolution
Repeatable accuracy of 7.62 μm

(0.3 mil).
Dovetails and/or platforms were 

used for alignment
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Substantial Variation in the Cast 
Geometry Exists from Blade-to-Blade

SS PS

SS PS

Mean variation from 
nominal for 105 
measured airfoils :

Standard deviation from 
nominal for 105 
measured airfoils :
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AFRL Design Tools Utilize the HuberFoil
Algorithm for Airfoil Parameterization

•Design optimization and user-driven 
shape iteration are used

•2-Equation RANS analysis using code 
LEO is used for profile design

•GUI-based flowfield and grid interrogation 
are available
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Variation in Trailing-Edge Parameters 
That Likely Affect 1B-2V Interaction

As-Measured Nominal
Mean Standard Deviation

Diameter (mm) 1.033 0.206 1.138
Wedge Angles (rad) 0.1166 0.0361 0.1073

Metal Angles (rad) 1.1207 0.0191 1.1462

1B Midspan Geometry
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Simulation Details for This Study

Case Setup :
• Steady simulations run to 8000 iterations
• Approximately 5.3M nodes per 1/2/1 sector 

provided sufficient spatial resolution
• 400 time-steps per cycle (or a time-step of 

0.883 μs) gave sufficient temporal resolution
• 15 cycles to periodic convergence
• 2 post-processing cycles

Cases Executed :
• 105 1/2/1 sector models with each measured 

blade run independently
• Full-wheel with 46 measured blades in as-

built configuration
• 2/4/2 sector model with blades 20-23
• Reduced unsteadiness 2/4/2 sector model 
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CFD Mesh Morphing

•MORPH algorithm used to alter the as-designed “blueprint” 
unsteady CFD mesh to fit the scanned airfoil surfaces

•New approach to generating as-manufactured CFD meshes 
 Uses full, dense, unstructured surfaces meshes
 Collected with structured light scanning systems
 Uses machine learning algorithms
 Some small modifications required to ignore cooling 
holes and instrumentation cutouts
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Numerical Method in Code Leo
• Basic Flow Solver 

 Density-based code 
 Finite volume approximation to each element 

• Green’s theorem applied to find partial derivatives 
– ΔU/ ΔX =  Σ (Ua Areax) / Volumee

• Distribution formula used to obtain  
– Second derivatives 
– Upwind biased due to convection and propagation

• Four types of element covered
– Tets pyramid, prism, and hex

 Explicit time-marching scheme
 Blend of 2nd and 4th order smoothing used to reduce oscillation of the flow field due to 

shocks and transient

• Convergence acceleration schemes 
 Multi-grid scheme  structured mesh 
 Residual propagation method  unstructured mesh

• Dual time-stepping method for time resolve flow simulations
• Preconditioning applied to speed up convergence for low speed flow 

problems
• Heat conduction module employs same numerical method
• Shock capturing technique

 2nd order smoothing to stabilize overshoots
 Pressure gradients used to determine where to apply smoothing

x
y
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RANS Models of the Turbine Were 
Developed Carefully

• Iterative Convergence
 Executing steady state simulations until residuals are sufficiently small [1]

• Grid Convergence
 Determining sufficient grid spatial resolution to capture flow physics [1,2]

• Temporal Convergence
 Determining the minimum temporal resolution required to capture flow 

physics [1]

• Periodic Convergence
 Executing time-accurate solution until the true periodic nature of the flowfield 

is obtained [3]

• Geometric Model Convergence
 Finding the minimum wheel sector required to represent the full annulus

[1] AIAA, 1988 , “Guide for the Verification and Validation of Computational Fluid Dynamics Simulations,” AIAA G-077-1998.

[2] Roache, P. J., 1997, “Quantification of Uncertainty in Computational Fluid Dynamics,” Annual Review of Fluid 
Mechanics, Annual Reviews, Inc., Palo Alto, CA, pp. 126-160.

[3] Clark, J. P., and Grover, E. A., 2007, “Assessing Convergence in Predictions of Periodic-Unsteady Flowfields,” ASME 
Journal of Turbomachinery, Vol. 129, pp. 740-749.
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Geometric Model Convergence
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Geometric Model Convergence

16
Differences of the Normalized DFT Magnitudes at 46E of the 

Full-Wheel Simulation and Each Sector as a Percentage of the 
Maximum Unsteadiness of the Full-Wheel Simulation

Case 6 (3c 1V, 4c/2u 1B, 3u 2V)
determined to have sufficiently 
modeled the HIT RT.
• Pressure traces at 5 point in areas of 

highest unsteadiness tracked closely 
to full-wheel simulation

• Downstream suction-side surface aft 
of cross-passage shock of case 6 
compares well with full-wheel analysis
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Unsteadiness Due to Shock Reflections 
Varies Markedly from Blade-to-Blade

100 (Standard 
Deviation of DFT 

mag.) / Ptin

Standard Deviation 
of DFT Phase 

Angle (degrees)

46E Unsteadiness
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Blade 20
(G3VFH)

D2KJC
L2PPBG3VFF

It Should be Possible to Reduce the 
Unsteadiness on a Blade of Interest

Consider 
Sensor #7 at
Blade 20 (G3VFH) 
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Again, Consider the Source of 46E 
Unsteadiness

Reflected shocks are labeled with 
subscripts indicating originating 
blade, e.g.

 SA traveling upstream toward 
blades

 SB impinging on 2V PS and 
reflecting to neighboring SS

Each blade is impacted by shocks 
from the second and third 
preceding blades, e.g.

 Blade D impacted by shocks 
from blades A and B

Note: Shocks become more 
aligned with circumferential 
direction with travel upstream
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Previous Analysis Indicated that Shocks
Impact 1B from 2 and 3 Passages Away 

Unsteadiness on Blade 20 :
Full-Wheel Calculation

Unsteadiness on Blade 20 : 
2/4/2 Model : Blades 20-23

100 DFT mag. / Ptinlet @ 46E
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Unsteadiness at Blade 20, Sensor #7 is 
Substantially Reduced from Initial Level

2/4/2 Model with Blades D2KJC, 
L2PPB, and G3VFF at positions 

21-23.Full-Wheel Calculation

100 DFT mag. / Ptinlet @ 46E
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Blade-to-Blade Performance Data

• “Rig efficiency” : Aeroperformance was calculated from mixed-out average 
quantities between rig inlet- and exit-rake locations

• 105 1/2/1 sector models with each measured blade run independently :

Delta efficiency from nominal (i.e. blueprint) result :

Minimum  = -0.4%
Maximum = 0.6%
Standard deviation = 0.2% 

• Full-wheel with 46 measured blades in as-built configuration :

Delta efficiency from nominal (i.e. blueprint) result = -0.1%
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Wavelet Scalograms Reveal Blade-to-
Blade Variations on 2V Sensors
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There are Also Vane-to-Vane Variations 
Apparent in the Data (Not Modeled)
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Summary and Conclusions

• The effect of as-manufactured geometry variations on 
unsteadiness due to shock reflections in a transonic turbine 
was assessed.

• 105 individual blades were simulated as well as the as-built 
full wheel.

• Substantial blade-to-blade variations were observed.

• For blades that are expected to have high resonant stress or 
where small performance improvements are the goal, a final 
design prediction with measured geometries is warranted.

• The availability of predicted flowfields for measured airfoils 
made it possible to reduce the unsteadiness on a target 
blade.
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