On the Conversion of a Large Turbo Fan Engine's Combustor to Be Fueled by Natural Gas

Yeshayahou Levy Technion - ISRAEL

http://jet-engine-lab.technion.ac.il

MY THANKS TO ALL CONTRIBUTORS:

Dr. Valery Sherbaum, Technion
Dr. Vitali Ovcherenko, Technion
Dr. Vladimir Erenburg, Technion
Mr. Alex Roizman, Technion
Mr. Dan Nahoom
Mr. Nadvany Valery
Mr. Matan Zakai

16th Israeli Symposium on Jet Engines and Gas Turbines, November 9 2017, Technion, Israel

16th Israeli Symposium on Jet Engines and Gas Turbines November 9 2017, Technion, Israel

Turbo and Jet (1) Engine Laboratory Technion – Israel

www. jet-engine-lab.technion.ac.il

•Mr. Ofir Harari, Israel Aircraft industry (IAI)

•Mr. Aviad Brandstein, Israel Aircraft industry (IAI)

Aeroderivative Gas Turbines

There has been a steady growth in the use of aero-derivative gas turbines, which are stationary variants of aero-engine.

In year	AERO ENGINE		GAS TURBINE		
2000	F404	\rightarrow	LM1600	150 UNITS	
	CF6-6	\rightarrow	LM2500	1130	
	CF6-80C2	\rightarrow	LM6000	300	

The target:

To convert existing jet engine to stationary electric generator:

- Reducing fan size and coupling to an 1 electric generator
- 2. Converting their fuel from jet fuel to **Natural Gas (NG)**

16th Israeli Symposium on **Jet Engines and Gas Turbines**, November 9 2017, **Technion**, Israel

(*) GE Aeroderivative, Gas Turbines – Design and Operating Features G.H. Badeer, GE IAD, , GE Power SystemsEvendale, OH, GER-3695E

Turbo and Jet (2) **Engine Laboratory** Technion – Israel

CF6-6

16th Israeli Symposium on Jet Engines and Gas **Turbines**, November 9 2017, **Technion**, Israel

Turbo and Jet (3) Engine Laboratory Technion – Israel

www.jet-engine-lab.technion.ac.il

16th Israeli Symposium on **Jet Engines and Gas Turbines.** November 9 2017, **Technion**, Israel

Turbo and Jet (4) **Engine Laboratory Technion – Israel**

Emission requirement (target):

As for GE LM 1800 e (18 Mwe):

NOx @15% O2, 25 ppm vd CO @15% O2, 25 ppm vd

(@ 60% relative humidity, Ta 15 deg C)

16th Israeli Symposium on **Jet Engines and Gas Turbines**, November 9 2017, **Technion**, Israel

Turbo and Jet (5)**Engine Laboratory Technion – Israel**

16th Israeli Symposium on Jet Engines and Gas **Turbines**, November 9 2017, **Technion**, Israel

Turbo and Jet (6)Engine Laboratory Technion – Israel

Exploded view of the CAD model of the Combustor

16th Israeli Symposium on Jet Engines and Gas Turbines, November 9 2017, Technion, Israel

Turbo and Jet (7) Engine Laboratory Technion – Israel

www. jet-engine-lab.technion.ac.il

OBJECTIVES

- The conversion of operation of jet engine combustion chamber from liquid jet fuel (JetA1) to natural gas
- The conversion should be done with minimum modifications of the combustion chamber. Ideally, only the fuel nozzle should be changed
- The amount of the NOx and CO emissions of the modified combustion chamber should be minimal and not greater than of the original design.

16th Israeli Symposium on **Jet Engines and Gas Turbines.** November 9 2017, **Technion**. Israel

Turbo and Jet (8) **Engine Laboratory Technion – Israel**

METHOD:

- Evaluate performance under normal operating condition using liquid 1. jet fuel (for reference data)
- Design a NG fuel nozzle and evaluating performance using NG 2. under similar $P_{s3} \& T_{s3}$ operating conditions
- Validation of simulations under laboratory conditions: 3.
 - Design a reduced model of the combustor, operating at atmospheric pressure,
 - Simulate performance at laboratory conditions (kerosene & NG),
 - Compare and calibrate CFD code
- 4. Optimize fuel nozzle's design

1. Evaluate performance under normal operating condition using jet fuel (for reference data)

16th Israeli Symposium on Jet Engines and Gas Turbines, November 9 2017, Technion, Israel

Turbo and Jet (10) Engine Laboratory Technion – Israel

www. jet-engine-lab.technion.ac.il

NORMAL OPERATING CONDITION

	Corrected data (standard day ISA Conditions)							
	Thrust	Fuel Flow	Static	Static Inlet				
		rate,	Pressure, PS3	temperature, T3				
	kgf kg/hr		bar-a	deg K				
Ground idle	400	350	2	420				
Max Continues	10,000	4,000	23	770				

16th Israeli Symposium on Jet Engines and Gas Turbines, November 9 2017, Technion, Israel

Turbo and Jet (11) Engine Laboratory Technion – Israel

www. jet-engine-lab.technion.ac.il

CFD Model (Simulation Condition)

Chemical Reaction Model: Non-premixed Combustion (Kerosene & Methane)

For kerosene and methane:

Equilibrium chemistry approximation (minimum Gibs Energy); intermediate species are calculated, while there is no need for detailed kinetic data.

Calculated 25 chemical species:

JetA: C12H23 (Jet-A), NCO, O3, C2H4, HNO3, CO2H2, HNO2, HOCO, CH2O, H2CO2, CHO, HCO, C2H6, HONO, H2O2, HO2, OH, CH4, C(s), H2, CO2, H2O, CO, O2. N2

Methane (23 species): CH4, CH3OH, C2H4, O3, HNO3, CO2H2, HNO2, HOCO, CHO, CH2O, H2CO2, HONO, H2O2, C2H6, HO2, OH, CO2, C(s), CO, H2, H2O, O2, N2

For methane (only) also:

Steady Flamelet combustion model using the GRI-Mech 3.0 optimized for NG with 325 reactions and 53 species.

Flamelet and Equilibrium models gave close results.

16th Israeli Symposium on **Jet Engines and Gas** Turbines, November 9 2017, **Technion**, Israel

Turbo and Jet (12) **Engine Laboratory Technion – Israel**

Performance at Max. Continues (jet fuel)

Total Temperature [K]

Liner Wall Temperature [K]

NOx at exhaust [mole fraction]

Exhaust Total Temperature [K]

16th Israeli Symposium on **Jet Engines and Gas** Turbines, November 9 2017, **Technion**, Israel

Turbo and Jet (13) **Engine Laboratory Technion – Israel**

2. Design a NG fuel nozzle and evaluating performance using NG under similar $P_{s3} \& T_{s3}$ operating conditions.

16th Israeli Symposium on Jet Engines and Gas Turbines, November 9 2017, Technion, Israel

Turbo and Jet (14) Engine Laboratory Technion – Israel

www.jet-engine-lab.technion.ac.il

NG Nozzle Optimization

In order to study the effect of gaseous fuel distribution and its velocities, several options of nozzle's designs were investigated:

Option A: slots

Option B: 3 rows of circular holes (same area as in A)

Option C: 2 rows holes (smaller area than in A & B)

Simulation were done using two CFD models: Flamelet and Equilibrium. Both models gave close results.

16th Israeli Symposium on **Jet Engines and Gas** Turbines, November 9 2017, **Technion**, Israel

Turbo and Jet (15)**Engine Laboratory Technion – Israel**

NG Nozzles – Simulations Results

	MWA	Max Section	Max Wall	Pattern factor	MWA Unburnt CH4	MWA CO	MWA NOx
	Ter	nperatures	res [K]		Concentrations [ppm dv] Mole Fraction		
A	1641	2102	1269	0.53	0.52	426	32
В	1640	2052	1312	0.48	0.024	188	32
С	1635	1996	1227	0.42	0.01	42.0	31

MWA – Mass Weighted Average

$$Pattern \ Factor = \frac{T_{max} - T_{avg}}{T_{avg} - T_{inlet}}$$

Option C (NG) Nozzle Results

NOx at exhaust [mole fraction]

16th Israeli Symposium on **Jet Engines and Gas** Turbines, November 9 2017, **Technion**, Israel

Exhaust Total Temperature [K]

Contours of Total Temperature (k)

Turbo and Jet (17) **Engine Laboratory Technion – Israel**

Comparison of the Jet Fuel to NG

	Air & Kerosene	Air & CH4 (Option C)		
Design	17.4% 15.5% 17.4% 0.2% 6.0%			
CO, ppm	276	42		
NOx, ppm	74	33		
Pattern factor	0.46	0.42		

All values are at entrance to turbine's rotor blades in ppm (dry mass fraction)

$$Pattern \ Factor = rac{T_{max} - T_{avg}}{T_{avg} - T_{inlet}}$$

- 3. Validation of simulations under laboratory conditions:
 - Design a reduced model of the combustor, operating at atmospheric pressure,
 - Simulate performance at laboratory conditions,
 - compare and calibrate CFD code

16th Israeli Symposium on **Jet Engines and Gas Turbines**, November 9 2017, **Technion**, Israel

Turbo and Jet (19) **Engine Laboratory Technion – Israel**

CFD Simulations for Kerosene – Test Conditions

Considered operating conditions:

Option	Inlet air	Inlet air	Air mass flow	Fuel mass flow	Required heating
	temperature	velocity, m/s	rate, kg/s	rate, g/s	power, kW
	T _{air} , K		(for test rig)	(per atomizer)	(for test rig)
1	774	130* —	→ 0.33	2.5	170 (too high)
2	200	130	0.85	6.5	-
2	500	50.4** 🗲	0.33 🗸	2.5	-
2	400	130	0.64	4.9	40
3		67.2** <	0.33	2.5	40

- Assuming stoichiometric conditions in Primary Zone
- Simulations were made for options 2 and 3.
- Three spray models were used: 1) pressure swirl, 2) solid cone, 3) hollow cone
- Only results of option 2 with solid cone are presented
 - * Taken from CFD simulations
 - ** Parameters evaluated for CFD simulations

MAIN RESULTS: Effect of initial parameters:

- 1. Stoichiometric equivalence ratio in combustion primary zone $(\phi=1)$, $P = 1 \ bara \ T_{air_inlet} = 774K not applicable$
- 2. $\phi=1$ in primary zone, $T_{air_inlet} = 300K$ simulations show low combustion efficiency quality under these conditions
- 3. $\phi=1$ in primary zone, $T_{air_inlet} = 400K$ simulations show a significant increase in the combustion process quality. Air heater with at least 40kW power is needed.

CFD Simulations for Kerosene – Test Conditions Solid Cone Atomizer, Pa= 1bar, Ta = 400K

Total Temperature [K]

Incomplete reaction process within the combustor !

16th Israeli Symposium on Jet Engines and Gas Turbines, November 9 2017, Technion, Israel

Liner Wall Temperature [K]

CFD Simulations for Kerosene – Test Conditions SOLID CONE ATOMIZER, Ta = 400K

CO Mass Fraction

Summary of Jet Fuel Simulations – Test Conditions

	Temperatures [K]			Velocity [m/s]	Concentrations [ppm] Mass fraction	%
	MWA	Max Section	Max Wall	N/1\A/A		Unburned
	exit	#1/#2				Fuel
Solid cone atomizer.						
Vp=5m/s, T _{air} =300K	1250	1999/1653	729	75.7	604	11
Solid cone atomizer. Vp=5m/s, Tair=400K.	1325	1993/1670	744	81	321	9.8

- Too much un-burnt fuel at the exhaust
- Pre heating to at least 400k is needed !

Fuel Spray Pressure is Too Low ...

Low Fuel Spray Pressure

- Narrow spray angle
- Big droplets
- Spray test with the swirling air should be done
- Modifications of the atomizer are needed

FUEL NOZZLE MODIFICATION

16th Israeli Symposium on Jet Engines and Gas Turbines, November 9 2017, Technion, Israel

Turbo and Jet (27) Engine Laboratory Technion – Israel

www.jot-ongine-lab.technion.ac.il

CFD Simulations for Methane – Test Conditions

Contours of Total Temperature (k)

Contours of Mass fraction of co

	Temperature, K			Velocity [m/s]	Mass fraction [ppm]		%
Ontion	MWA	Max	Max Center		MWA	MWA	Unburned Fuel
Option	exit	Liner Wall	Section		CO	NOx	
P=1 bar	1250	460	2202	70.4	706	0.2	0.8
T _{air} =400K	1239	409		/9.4	700	0.5	0.8
P=22.6 bar,	1625	1227	2278	016	40	22	0.5
T=774K	1035	1227	2218	94.0	42	23	0.5

16th Israeli Symposium on Jet Engines and Gas Turbines, November 9 2017, Technion, Israel

Turbo and Jet (28) Engine Laboratory Technion – Israel

www. jet-engine-lab.technion.ac.il

16th Israeli Symposium on Jet Engines and Gas Turbines, November 9 2017, Technion, Israel

Turbo and Jet (29) Engine Laboratory Technion – Israel

www.jotengine-lab.technion.ac.il

16th Israeli Symposium on Jet Engines and Gas **Turbines**, November 9 2017, **Technion**, Israel

www.jet-engine-lab.technion.ac.il

SUMMARY & CONCLUSIONS

- Reference combustion data were obtained for jet fuel
- Following design iterations, NG fuel nozzles design was obtained with performance confirmed using CFD
- For validation, atmospheric pressure lab scaled model was designed, modeled by CFD and currently being constructed
- Once the model results are confirmed experimentally, we'll consider the full scale simulations as valid and proceed with further optimization using the CFD as part of the design tools.

The End

16th Israeli Symposium on Jet Engines and Gas Turbines, November 9 2017, Technion, Israel

Turbo and Jet (33) Engine Laboratory Technion – Israel

www.jet-engine-lab.technion.ac.il

Fuel Spray Pressure is Too Low ...

16th Israeli Symposium on Jet Engines and Gas Turbines, November 9 2017, Technion, Israel

Turbo and Jet (34) Engine Laboratory Technion – Israel

www.jet-engine-lab.technion.ac.il

FUEL NOZZLE MODIFICATION

16th Israeli Symposium on Jet Engines and Gas Turbines, November 9 2017, Technion, Israel

Turbo and Jet (35) Engine Laboratory Technion – Israel

www.jotengine-lab.technion.ac.il

16th Israeli Symposium on Jet Engines and Gas Turbines, November 9 2017, Technion, Israel

Turbo and Jet (36) Engine Laboratory Technion – Israel

www. jet-engine-lab.technion.ac.il

16th Israeli Symposium on Jet Engines and Gas Turbines, November 9 2017, Technion, Israel

Turbo and Jet (37) Engine Laboratory Technion – Israel

www. jet-engine-lab.technion.ac.il