

Extended load range operation of GTs as a tool for controling electricity grid equipped with renewable energy suppliers.

Boris Chudnovsky Ilya Chatskiy Alex Lazebnikov IEC

THE 18th ISRAELI SYMPOSIUM
ON JET ENGINES AND GAS
TURBINES

Methodology of NOx emission reduction

n crn anwar Israel Electric

- Traditional methods of NOx reduction in combustion exists:
 - Modification of the firing system to Lean Premixed Combustion (DLN – Dry Low NOx)
 - Injection of water into the firing system (WLN Wet Low NOx)
 - Post combustion flue gas treatment to remove NOx (such as SCR systems – Selective Catalytic Reduction)

25 years

Requirements for stable combustion

Design Technology – A Four Sided Box

95 mars

Emission formation in gas turbines

25 PART

Emission formation in gas turbines

25 mars

Emission formation in gas turbines

macion name compactore

General View

Frame 6 GE GT

50 MW P&W FT4 GT

Lean Premixed Combustion Siemens

SIEMENS

SIEMENS **HR3 Burner**

Burner Mod's & Up's Overview

SIEMENS "2 SB" / "reduced swirl" / "PMP"

 I&C changes Scope I&C changes Start reliability Combustion stability NOx reduction down to increase 15 ppm* increase Benefits Premix operation Power & efficiency Premix operation over increase with FTI over full load range full load range Enables FGPH operation Start reliability increase

Upgraded firing system

Burner Upgrade

Reduced Swirl Burner (RSB)

Siemens GT and Burner General view

Lean Premixed Combustion GE

DLN2.0+

DLN2.6+

9E DLN1 GT General view

9F DLN2 GT General view

Test, 12.12.2011 Tamb=13.6 C,

Atarot

S,

20

10

5

15

20

Load, Mw

25

30

35

40

- Atarot Frame6, Diffusion

- Siemens F 250 MW, DLN premix start
- ▲ GE, 9FA, DLN 2+, IBHon, Comp in 20 C with water injection
- +GE 9E, DLN1, IBHon
- -P&W, Engine B, Diffusion
- ◆ GE, 9FA, DLN2.6, IBHon with water injection

- ■GE, 9FA, DLN2+, IBHonComp in 14 C with water injection
- GE 9E, DLN1, IBHoff
- **XP&W,Engine A, Diffusion**
- -Atarot Frame6, Diffusion with water injection

Methanol and LFO Firing

*Methanol, Delavan, High Flow, Engine B, 09.14

Particulate emission as function of GT load 30 25 25 10 10 15 20 25 30 GT load, Mw

◆Oil#2 Methanol

BFG Firing

Gas Turbines Emissions Steam Injection

Proposed combined cycle arrangement

Simulation Steps

- Step 1 Thermal balance and heat transfer calculations throughout the length axis of the combustor including (local values of burnout, O2, Flue Gas temperatures and main flue gas constituents).
- Step 2 Chemical Kinetics modeling and initial operation and validation to fit measured data Firing LFO/NG.
- Step 3 Optimizing to reach the best Emissions vs. performance and combustion stability effect.

Combustor for simulation validation – **GE Frame 6B**

Emission Validation Results

Frame 6 simulations results at base load

— NG, Frame 6B, Base load, Diffusion mode —— NG+30t/h FGR, Frame 6, Base load, Diffusion mode

Frame 6 simulations results at part load 🥰

Large "F" GT simulations results at base load 💒

Israel Electric

Large "F" GT simulations results at part load 💒

Large "F" CC simulations results

11

Flue gas recirculation to flue gas ratio, %

Base load, FGR, with compressor losses —— Power (Base load, FGR, with compressor losses) —— Poly. (Base load, FGR, with compressor losses)

380

Lighting Up

Large "F" CC simulations results

· Base load, FGR, with compressor losses

----- Poly. (Base load, FGR, with compressor losses)

Base load water

----Poly. (Base load, steam)

Base load, steam

---- Power (Base load, steam)

----Poly. (Base load water)

Power (Base load, FGR, with compressor losses)

Conclusion

Based on the performed simulation it may be concluded that:

FGR mixing with fuel may be a useful tool for extended GT load range operation keeping minimum emissions. However, in order to make more accurate conclusion about the proposed technology a laboratory and full scale test are recommended.

Thank you